Optimal Design of the Rotor Structure of a HSPMSM Based on Analytic Calculation of Eddy Current Losses

نویسندگان

  • Yanan Yu
  • Deliang Liang
  • Xing Liu
چکیده

The rotor eddy current losses of a high-speed permanent magnet synchronous motor reduce the efficiency of the motor and increase the temperature rise of the rotor. In severe cases, the permanent magnet of the rotor can be demagnetized, affecting the safe operation of the motor. In this paper, an analytical model of rotor eddy current losses calculation based on Maxwell equations is introduced. The eddy current losses of rotor structures, e.g., protection sleeve, shield layer and permanent magnets, are analyzed. The calculation results of rotor eddy current losses are compared with two-dimensional (2D) finite element analysis. The comparison verifies the accuracy and versatility of analytical calculation. Finally, the influences of the variables on eddy current losses in the derived model are analyzed. Based on the principle of minimizing eddy current losses, an optimized structure with copper layers covering both inner and outer surfaces of the protective sleeve is proposed. Furthermore, the optimized distribution parameter of copper film thickness is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new optimization of segmented Interior permanent magnet synchronous motor based on increasing flux weakening range and output torque

In this paper a new optimization function for increasing the flux weakening range and output torque value of segmented interior permanent magnet synchronous motor (SIPMSM) is presented. In proposed objective function normalized characteristic current and saliency ratio are considered as two optimization variables during optimization process. The focus of this paper is rotor structure design suc...

متن کامل

Ventilation Structure Improvement of Air-cooled Induction Motor Using Multiphysics Simulations

Optimal design of large induction motor is a process that involves electrical and mechanical skills as well as thermal and fluid dynamic skills. For recent machine layouts, one cannot rely on standard analysis methods. In multiphysics simulations which are done by weak coupling finite-element method, rotation boundary values on interface between air gap and rotor cannot be applied directly for ...

متن کامل

Optimal Design on Bearingless Permanent Magnet Synchronous Motor to Decrease Losses and Torque Ripple

It is important to clarify the eddy current losses in permanent magnet rotor for temperature rising to induce irreversible demagnetization when the bearingless permanent magnet synchronous motor (BPMSM) is operating at high speed. In this paper, the torque and radial suspension force producing mechanisms of BPMSM are introduced. The relative motion relationships among radial suspension force, r...

متن کامل

Design and Control of a Novel hybrid Active Power Filter based on Load Harmonic Currents Separation with the aim of DC-link voltage minimization in voltage source converter

This paper proposes a new hybrid active power filter, including voltage source converter (VSC) based active power filter and Thyristor Controllable LC Passive Filter (TCLC-HAPF) for eliminating harmonic load current components and compensating reactive power. This new structure which is based on the separation of high and low-frequency components of load current idea can reduce the drawbacks of...

متن کامل

Optimization of an HTS Induction/Synchronous Motor According to Changing of HTS Tapes Critical Current by Analytical Hierarchy Process

This paper represents the performance of a squirrel-cage High Temperature Superconducting Induction/ Synchronous Motor (HTS-ISM) based on nonlinear electrical equivalent circuit. The structure of the HTS-ISM is the same as that of the squirrel-cage type induction machine, and the secondary windings are fabricated by the use of the HTS wires. It has already been shown that based on the experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017